Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?

نویسندگان

  • Matthew W Bundle
  • Kacia S Hansen
  • Kenneth P Dial
چکیده

Based on aerodynamic considerations, the energy use-flight speed relationship of all airborne animals and aircraft should be U-shaped. However, measures of the metabolic rate-flight speed relationship in birds have been available since Tucker's pioneering experiments with budgerigars nearly forty years ago, but this classic work remains the only study to have found a clearly U-shaped metabolic power curve. The available data suggests that the energetic requirements for flight within this species are unique, yet the metabolic power curve of the budgerigar is widely considered representative of birds in general. Given these conflicting results and the observation that the budgerigar's mass is less than 50% of the next smallest species to have been studied, we asked whether large and small birds have metabolic power curves of different shapes. To address this question we measured the rates of oxygen uptake and wingbeat kinematics in budgerigars and cockatiels flying within a variable-speed wind tunnel. These species are close phylogenetic relatives, have similar flight styles, wingbeat kinematics, and are geometrically similar but have body masses that differ by a factor of two. In contrast to our expectations, we found the metabolic rate-flight speed relationship of both species to be acutely U-shaped. We also found that neither budgerigars nor cockatiels used their normal intermittent flight style while wearing a respirometric mask. We conclude that species size differences alone do not explain the previously unique metabolic power curve of the budgerigar; however, due to the absence of comparable data we cannot evaluate whether the mask-related kinematic response we document influences the metabolic rate-flight speed relationship of these parrots, or whether the energetics of flight differ between this and other avian clades.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flight Modes in Migrating European Bee-Eaters: Heart Rate May Indicate Low Metabolic Rate during Soaring and Gliding

BACKGROUND Many avian species soar and glide over land. Evidence from large birds (m(b)>0.9 kg) suggests that soaring-gliding is considerably cheaper in terms of energy than flapping flight, and costs about two to three times the basal metabolic rate (BMR). Yet, soaring-gliding is considered unfavorable for small birds because migration speed in small birds during soaring-gliding is believed to...

متن کامل

Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)(1/6) and (wing loading)(1/2) among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we u...

متن کامل

The energy cost of loaded flight is substantially lower than expected due to alterations in flight kinematics.

The effect of experimentally increased wing loading on the energy cost of flight was examined in cockatiels Nyphicus hollandicus. Five individuals were flown for periods of approximately 2 min, while carrying additional payload mass amounting to between 5 and 20% of unloaded body mass. The energy cost of flight was measured using the 13C-labelled bicarbonate technique, which was also calibrated...

متن کامل

Hummingbird hovering energetics during moult of primary flight feathers.

How does a hovering hummingbird compensate for the loss of flight feathers during moult when the mechanism of lift force generation by flapping wings is impaired? The flight performance of five individual ruby-throated hummingbirds with moulting primary flight feathers and reduced wing area was compared with that before their moult. Hummingbirds were flown in reduced air densities using normoxi...

متن کامل

Effects of body size on take-off flight performance in the Phasianidae (Aves).

To evaluate the mechanisms responsible for relationships between body mass and maximum take-off performance in birds, we studied four species in the Phasianidae: northern bobwhite (Colinus virginianus), chukar (Alectoris chukar), ring-necked pheasant (Phasianus colchicus) and wild turkey (Meleagris gallopavo). These species vary in body mass from 0.2 to 5.3 kg, and they use flight almost solely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2007